IRIDIA BibTeX Repository (November 8, 2021)

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Annotation: Computational Foundations of Social Choice.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Personalised medicine, Biopharmaceuticals Supply chain, Facility location-allocation, Evolutionary multi-objective optimisation.

Keywords: irace.

Doğan Aydın, Gürcan Yavuz, Serdar Özyön, Celal Yasar, and Thomas Stützle. Artificial Bee Colony Framework to Non-convex Economic Dispatch Problem with Valve Point...

[130] François Bachoc, Céline Helbert, and Victor Picheny. **Gaussian process optimization with failures: Classification and convergence proof.** *Journal of Global Optimization*, 2020. doi:10.1007/s10898-020-00920-0. Keywords: crashed simulation; latent gaussian process; automotive fan design; industrial application; GP classification; Expected Feasible Improvement with Gaussian Process Classification with signs; EFI GPC sign.

https://github.com/iridia-ulb/references

Keywords: tspw.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Annotation: Errata: DTLZ6 and DTLZ7 in the paper are actually DTLZ7 and DTLZ8 in [672].

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: city resilience, city peer review, disaster risk governance.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Attainment function, Expected Hypervolume Improvement, Kriging, Multi-objective optimization, Vorob’ev expectation.

Annotation: Supervised by Marco Dorigo.

Keywords: F-race.

Keywords: F-race, iterated F-race, irace, tuning.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: irace.

Keywords: irace.

Keywords: big-valley hypothesis, TSP, landscape analysis.

https://github.com/iridia-ulb/references

Annotation: Proposed SVM.

Keywords: multi-mode resource-constrained project scheduling, project scheduling, simulated annealing.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Multi-objective optimization, Smart mobility, Traffic lights planning.

[416] Dimo Brockhoff, Roberto Calandra, Manuel López-Ibáñez, Frank Neumann, and Selvakumar Ulaganathan. **Meta-modeling for (interactive) multi-objective optimization (WG5).** In Kathrin Klamroth, Joshua D. Knowles, Günther Rudolph, and Margaret M. Wiecek, editors,

Keywords: multiple criteria decision making, evolutionary multiobjective optimization.

https://github.com/iridia-ulb/references

Keywords: 2-exchange delta evaluation for QAP.

https://github.com/iridia-ulb/references

Keywords: computer social choice, mallows model, sample complexity.

Keywords: Estimation of distribution algorithms, Generalized Mallows model, Permutation flowshop scheduling problem, Permutations-based optimization problems.

Keywords: F-race.

https://github.com/iridia-ulb/references

[500] Xuewen Chen and Andreas Stafylopatis, editors. Computational Intelligence (SSCI), 2016 IEEE Symposium Series on, 2016.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Hybrid algorithms, Evolutionary algorithms, Simulation optimization, Uncertainty, Traffic light planning.

Annotation: Proposed a reproducibility taxonomy, defined reproducibility and taxonomy.

https://github.com/iridia-ulb/references

Annotation: multiplicity; multiple endpoints; multiple treatments; p-value adjustment; type I error; argues that if results are intended to be interpreted marginally, there may be no need for controlling experimentwise error rate.

Keywords: Approximation algorithms, Borda’s method, feedback arc set problem, rank aggregation, tournaments.

[614] Steven B. Damelin, Fred J. Hickernell, David L. Ragozin, and Xiaoyan Zeng. *On Energy, Discrepancy and Group Invariant Measures on Measurable Subsets of Euclidean Space*. *Journal of Fourier Analysis and Applications*, 16(6):813–839, 2010. *Keywords*: Capacity; Cubature; Discrepancy; Distribution; Group invariant kernel; Group invariant measure; Energy minimizer; Equilibrium measure; Numerical integration; Positive definite; Potential field; Riesz kernel; Reproducing Hilbert space; Signed measure.

https://github.com/iridia-ulb/references

Keywords: anytime, performance profiles.

Annotation: Naive definition of PLO-set.

Keywords: SBX.

Keywords: polynomial mutation.

Annotation: Proposed NSGA-III.

Keywords: DTLZ benchmark, Do not cite this TR! It is incorrect and it is superseded by [672].

Keywords: DTLZ benchmark.

https://github.com/iridia-ulb/references

Keywords: scenario-based.

Keywords: irace.

https://github.com/iridia-ulb/references

Annotation: This paper cannot be found on internet!! Does it exist?

Annotation: Supervised by Dr. Martine Labbé.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Annotation: Supervised by Thomas Stützle and Manuel López-Ibáñez.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: scenario-based.

Annotation: Proposed Expected Hypervolume Improvement (EHVI).

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references
Keywords: irace.

Annotation: BFGS.

Keywords: Mallows model, ranking, probabilistic models.

Annotation: LIS-CONF-1994-003.

https://github.com/iridia-ulb/references

[938] Annotation: Proposes MOGA.

https://github.com/iridia-ulb/references

Keywords: Docker, Improving transparency, OCR, Open science, Replicability, Reproducibility.

Keywords: Kriging; Gaussian Process; EGO; Design of Experiments.

Keywords: Swarm robotics; Automatic design; AutoMoDe.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references Page 79

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: multiple criteria decision making, evolutionary multiobjective optimization.

https://github.com/iridia-ulb/references

Keywords: high-order EAF.

Keywords: EAF.

Annotation: Proposed looking at anytime behavior as a multi-objective problem.

Annotation: The reproducibility guidelines can be found here: https://folk.idi.ntnu.no/odderik/reproducibility_guidelines.pdf and a short how-to can be found here: https://folk.idi.ntnu.no/odderik/reproducibility_guidelines_how_to.html.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: theory, automatic configuration, capping.

Keywords: bipop-cma-es.

Keywords: CMA-ES.

https://github.com/iridia-ulb/references

Keywords: automated algorithm configuration, CMA-ES, racing.

Keywords: SOCO benchmark.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: SMAC, ROAR.

Keywords: parameter importance.

Keywords: fANOVA, parameter importance.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

[1369] Elena A. Kabova, Jason C. Cole, Oliver Korb, Manuel López-Ibáñez, Adrian C. Williams, and Kenneth Shankland. Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm. Journal

https://github.com/iridia-ulb/references
Keywords: crystal structure determination, powder diffraction, simulated annealing, parameter tuning, irace.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Annotation: Proposed multi-objectivization.

Keywords: Computational evaluation, Heuristics, Project scheduling, Resource constraints.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Ant colony optimization, Travelling salesman problem with time windows, Hybridization.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Evolutionary Computation, Reproducibility, Empirical study, Benchmarking.

Keywords: Evolutionary Computation, Reproducibility, Empirical study, Benchmarking.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: bin packing.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references
Annotation: Proposed Bayesian optimization.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

[1873] J. Mote, D. L. Olson, and M. A. Venkataramanan. A comparative multiobjective programming study. Mathematical and Computer Modelling, 10(10):719–729, 1988. doi:10.1016/0895-7177(88)90085-4. Keywords: artificial DM, interactive. Annotation: The purpose of this study was to systematically evaluate a number of multiobjective programming concepts relative to reflection of utility, assurance of nondominated solutions and practicality for larger problems using conventional software. In the problem used, the nonlinear simulated DM utility function applied resulted in a nonextreme point solution. Very often, the preferred solution could end up being an extreme point solution, in which case the techniques relying upon LP concepts would work as well if not better than utilizing constrained objective attainments. The point is that there is no reason to expect linear or near linear utility.

https://github.com/iridia-ulb/references

Keywords: REVAC.

\textit{Keywords:} REVAC.

\textit{Keywords:} jmetal, multi-objective metaheuristics, open source, optimization framework.

\textit{Keywords:} cognition, Turing, search, problem solving, symbols, heuristics, list processing, computer science, artificial intelligence, science, empirical.

\url{https://github.com/iridia-ulb/references}

Keywords: artificial DMs.

Annotation: In this research, we proposed to build an automated framework for testing interactive multiobjective optimization methods, without utilizing a value function to represent the DM’s preferences. This was achieved by replacing the human DM with an artificial DM constructed from two distinct parts: the steady part and the current context. With the steady part the artificial DM tries to maintain the search towards its preferences, while at the same time the current context allows changing the direction as well as ending the solution process prematurely, mimicking actions of a human DM.

Keywords: Decision Analysis, Human Information Processing, Linear Programming.

[1955] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Lavender, La Creis Kidd, and Jason H. Moore. Automating Biomedical Data Science Through Tree-Based Pipeline

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: irace.

Keywords: irace, SMAC, GGA, REVAC, VRP.

Keywords: Gaussian processes, data processing.

Keywords: artificial DM, interactive.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Cellular automata; Genetic algorithms; Road traffic; Road vehicles; Traffic engineering computing; Beowulf cluster; La Almozara district; Saragossa; Cellular automata; Cluster computing; Genetic algorithm; Multiple-instruction multiple data; Traffic light programming; Traffic microsimulation; Traffic signal optimization; Urban traffic congestion; Cellular automata (CA); Genetic algorithms (GAs); Intelligent transportation systems; Microsimulation; Traffic congestion; Traffic modeling.

https://github.com/iridia-ulb/references

Keywords: Quantifying Homogeneity; Empirical Analysis; Parameter Optimization; Algorithm Configuration.

Annotation: Proposed Safe Active Learning (SAL) algorithm.

https://github.com/iridia-ulb/references

Keywords: Rec-PM.

Keywords: DE-DDQN.

Keywords: Supply chain management, Multi-objective optimisation, Deep uncertainty, Scenario planning, Renewable energy.

Keywords: irace.

Annotation: For some reason, this was not actually published in the LNCS Proceedings of EA.

Keywords: ACOR.
Annotation: Proposed ACOR (ACO_\text{R}).

Keywords: reproducibility, vehicle routing.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Annotation: Proposed difference between ad hoc and non-ad hoc interactive multi-objective optimization methods.

Keywords: Evolutionary algorithm, SUMO, Smart city, Smart mobility, Traffic simulation.

https://github.com/iridia-ulb/references

Keywords: CEC’05 benchmark.

Annotation: Also known as KanGAL Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, IIT Kanpur).

Keywords: SafeOpt.

Keywords: StageOpt.

Annotation: Published as [2411].

Keywords: StageOpt.

Annotation: Available from https://the-turing-way.netlify.app. This work was supported by The UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1, particularly the "Tools, Practices and Systems" theme within that grant, and by The Alan Turing Institute under the EPSRC grant EP/N510129/1.

https://github.com/iridia-ulb/references

Keywords: ant colony optimization, traveling salesman problem, cunning ant, donor ant, local search.

Keywords: data visualization, information graphics, cognitive science.

Keywords: scenario-based.

Keywords: SafeMDP.

Keywords: Reinforcement Learning; Markov Decision Process; SafeML.

Keywords: Metaheuristics, Meta-analysis, Adaptive large neighborhood search.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references
[2522] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. Evolving the structure of evolution strategies. In Xuewen Chen and Andreas Stafllopatis, editors, Computational Intelligence (SSCI), 2016 IEEE Symposium Series on, pages 1–8, 2016. Keywords: automated design, automatic configuration, cma-es.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

[2560] Markus Wagner, Tobias Friedrich, and Marius Thomas Lindauer. Improving local search in a minimum vertex cover solver for classes of networks. In Proceedings of the 2017 Congress on Evolutionary Computation (CEC 2017), pages 1704–1711, Piscataway, NJ, 2017. IEEE Press. doi:10.1109/CEC.2017.7969507. Keywords: graph theory;search problems;local search;minimum vertex cover solver;network classes;straightforward alternative approach;benchmark sets;graphs;algorithm portfolio;single integrated approach;Training;Portfolios;Algorithm design and analysis;Prediction algorithms;Machine learning algorithms;Optimization;Benchmark testing;smac;paramils.

Keywords: scenario-based.

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

https://github.com/iridia-ulb/references

Keywords: Evolutionary programming (Computer science); Neural networks (Computer science); Evolutionary computation.

Keywords: irace.

https://github.com/iridia-ulb/references

Keywords: CEGO, Bayesian optimization.

Keywords: CEGO, Bayesian optimization.

Annotation: Proposed CEGO algorithm.

Annotation: Introduces penalty-based boundary intersection (PBI) function.

https://github.com/iridia-ulb/references

Keywords: model selection, multi-objective optimization, racing algorithm, sequential probability ratio test.

Keywords: multi-modal, IGDX.

Keywords: performance profiles.

Keywords: IBEA.

Annotation: Introduces hypervolume measure.

Keywords: ZDT benchmark.

Annotation: Proposed the combination of quality indicators and epsilon-indicator.

Keywords: Performance assessment; Preference articulation; refinement; Set Partitioning; Set-preference.
Annotation: Proposed SPAM and explores combination of quality indicators.

https://github.com/iridia-ulb/references

Keywords: Machine Decision Maker.